Обычная версия сайта Размер шрифта Цветовая схема Изображения

Laboratory of theoretical physics

Nucleon-nucleon optical potential

Two versions of the NN potentials inverted from the phase shift analysis

  • Moscow NN potential with forbidden states in S and P partial waves

view

  • Repulsive core NN potential

view

All potentials are presented by points V(r)={[ri, i=1..N]}; {[V(ri), i=1..N]}. All results (phase shifts can deuteron properties) were calculated with splines of first order of these potentials.

Units: [r]=1 Fm; [V]=1 Fm-2, in some cases [V]= 1 MeV is presented as well (the multiplier C=41.45971 MeV•Fm2 can be used).

We do not divide potentials into central, tensor et al components. So for single channel the partial Schrödinger equation is:

For coupled channels the partial Schrödinger equations are:

where q2=Ec.m.m; Ec.m. is energy of the NN in c.m.s., m is reduced mass of the NN system.
 

p-N optical potential

The p-N potentials inverted from the phase shift analysis

  • partial potentials

view

All potentials are presented by points V(r)={[ri, i=1..N]}; {[V(ri), i=1..N]}. All results (phase shifts can deuteron properties) were calculated with splines of first order of these potentials.

Units: [r]=1 Fm;  [V]= 1 MeV .

The partial Schrödinger equation is:

,

where q2=Ec.m.m; Ec.m. is energy of the p-N in c.m.s., m is reduced mass of the p-N system. 

K+N optical potential

K+N partial potentials

  • K+N potential

view

All potentials are presented by points V(r)={[ri, i=1..N]}; {[V(ri), i=1..N]}. All results (phase shifts can deuteron properties) were calculated with splines of first order of these potentials.

Units: [r]=1 Fm; [V]= 1 MeV .

The partial Schrödinger equation is:

,

where q2=Ec.m.m; Ec.m. is energy of the K+N in c.m.s., m is reduced mass of the K+N system.

Извините, ваш Интернет-браузер не поддерживается.

Пожалуйста, установите один из следующих браузеров:


Google Chrome (версия 21 и выше)

Mozilla Firefox (версия 4 и выше)

Opera (версия 9.62 и выше)

Internet Explorer (версия 7 и выше)


С вопросами обращайтесь в управление информатизации ТОГУ, mail@pnu.edu.ru