Points of 3 S 1 - 3 D 1 Moscow potentials
points may be downloaded as vectors: r=[r1,r2,....rn]; V=[V1,V2,...Vn]; n=559. There is enough points to get good description of phase shift analysis by spline of 1st order |
|||
|
|
Optical model V1opt(r)=(1+ia1)V1(r), V2opt(r)=(1+ia2)V2(r), VTopt(r)=(1+ia)VT(r)
Elab, MeV | a1 | a2 | aT |
450 500 550 600 650 700 750 800 850 900 950 999 1100 |
0.000659123 0.00146637 0.00282582 0.00500111 0.00826992 0.0397312 0.0463304 0.0525344 0.044292 0.0857364 0.124041 0.140914 0.13799 |
0.00157074 0.00363494 0.00733229 0.0136673 0.0238741 0.0455715 0.0422277 0.131258 0.151257 0.281645 0.446863 0.619482 0.661964 |
-0.00125168 -0.00285401 -0.00563755 -0.010252 -0.0174288 -0.133098 -0.167959 -0.0729714 -0.0970676 -0.168575 -0.274398 -0.450696 -0.540408 |
Deuteron wave functions, points from r=0 Fm to 12 Fm with constant step h=0.0012 Fm
The deuteron properties
|
Exp.a |
Calculation |
Energy (MeV) |
2,22458900(22) |
2,2246b |
Q (Fm2) |
0,2859(3) |
0,2674c |
AS (Fm-1/2) |
0,8802(20) |
0,8892 |
rd (Fm) |
1,9634 |
1,9639 |
η( d / s ) |
0,02714 |
0,02714 |
μ d (n.m) |
0,857406(1) |
0,8496c |
a [1];
b effective energy without relativistic correction 2,2233 MeV [2];
c without meson exchange currents.